Electron-boson spectral density function of correlated multiband systems obtained from optical data: Ba0.6K0.4Fe2As2 and LiFeAs.
نویسنده
چکیده
We introduce an approximate method which can be used to simulate the optical conductivity data of correlated multiband systems for normal and superconducting cases by taking advantage of a reversed process in comparison to a usual optical data analysis, which has been used to extract the electron-boson spectral density function from measured optical spectra of single-band systems, like cuprates. We applied this method to optical conductivity data of two multiband pnictide systems (Ba0.6K0.4Fe2As2 and LiFeAs) and obtained the electron-boson spectral density functions. The obtained electron-boson spectral density consists of a sharp mode and a broad background. The obtained spectral density functions of the multiband systems show similar properties as those of cuprates in several aspects. We expect that our method helps to reveal the nature of strong correlations in the multiband pnictide superconductors.
منابع مشابه
Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.
We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielect...
متن کاملInvestigating the Longitudinal Optical Conductivity in Three-Layer Graphene Systems with Composes Mono-Bi-Bi and Bi-Mono-Bi and Bi-Bi-Mono
The longitudinal optical conductivity is the most important property for graphene-baseddevices. So investigating this property for spatially separated few-layer graphene systems analytically and numerically is the main purpose of our study. Each layer can be mono- or bi-layer graphene. The density-density correlation function has been screened by the dielectric function using the random p...
متن کاملMono-Mono-Mono and Bi-Bi-Bi three-layer graphene systems’ optical conductivity
Investigating the longitudinal optical conductivity of graphene systems, which is the mostimportant property for opto-electronic devices, for three-layer graphene systems theoretically and numerically is the main purpose of this study. Each layer can be mono- or bi-layer graphene. Separation between layers has been denoted by d, selected to be about ten nanometers. The carrier densities i...
متن کاملFeTe0.55Se0.45: A multiband superconductor in the clean and dirty limit
The detailed optical properties of the multiband iron-chalcogenide superconductor FeTe0.55Se0.45 have been reexamined for a large number of temperatures above and below the critical temperature Tc = 14 K for light polarized in the a-b planes. Instead of the simple Drude model that assumes a single band, above Tc the normal-state optical properties are best described by the two-Drude model that ...
متن کاملEffect of Electron-Phonon Interaction on Optical Properties in One-Dimensional Mott Insulators
Interplay of strong electron correlation and electron-phonon interaction is one of important issues in the physics of low dimensional correlated electron systems. In order to understand the interplay, we examine the optical properties of the one-dimensional (1D) Hubbard-Holstein model at half-filling, by employing the dynamical density matrix renormalization group (DMRG) technique. We discuss t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 28 12 شماره
صفحات -
تاریخ انتشار 2016